2018-11-14 | Anmelden
 
 

Datenreduktion mit geringem Datenverlust in der Videobilderkennung

Überblick von Ähnlichkeitsmaßen bewertet von Mensch und Maschine [aus: Ritter et al: Simplifying Accessibility Without Data Loss: An Exploratory Study on Object Preserving Keyframe Culling, S.9]

Überblick von Ähn­lichkeits­maßen bew­ertet von Men­sch und Mas­chine [aus: Rit­ter et al: Sim­pli­fy­ing Acces­si­bil­i­ty With­out Data Loss: An Explorato­ry Study on Object Pre­serv­ing Keyframe Culling, S.9]

In Zusam­me­nar­beit mit Prof. Dr. Dr. Gisela Susanne Bahr vom Flori­da Insti­tute of Tech­nol­o­gy führte die Stiftung­spro­fes­sur Media Com­put­ing unter der Leitung von Jun.-Prof. Dr. Marc Rit­ter eine explo­rative Studie im Bere­ich der Bilderken­nung in Video­ma­te­r­i­al durch. Ins­beson­dere geht es um die Reduzierung von Video-Keyframes unter Erhal­tung aller rel­e­van­ten Objek­tin­stanzen, welche im Rah­men des TrecVid Instance Search Wet­tbe­werbs 2015 [Link] aus­gewählt wur­den und in vier Stun­den Video­ma­te­r­i­al der BBC Serie “East Enders” erkan­nt wer­den soll­ten.

Bei der Analyse von Video­ma­te­r­i­al erfol­gt zunächst eine Auswahl von einzel­nen Keyframes, die repräsen­ta­tiv für die jew­eilige Szene ste­hen. Um redun­dante Bilder­in­halte zu ver­mei­den ist die Anzahl der aus­gewählten Keyframes pro Szene so ger­ing wie möglich zu hal­ten, was durch eine fehlende Trainigsmöglichkeit des Algo­rith­mus’ erschw­ert wird. Im Gegen­satz zu anderen Forsch­ern, die eine starre Anzahl von Keyframes auswählen (z.B. ein Keyframe pro Sekunde), entsch­ieden sich die Forsch­er für eine Auswahl­meth­ode, die sich an der Länge der Szene ori­en­tiert, da sich Objek­t­po­si­tio­nen inner­halb län­ger­er Szenen verän­dern kön­nen. In ihrer Studie sortierten die Forsch­er dann manuell die übri­gen Dup­likate aus und ver­sucht­en die ange­wandten Auswahlkri­te­rien objek­tiv zu evaluieren und mit com­put­ergestützten Maßen maschinell nachzustellen. Dabei erre­icht­en sie eine Reduzierung der repräsen­ta­tiv­en Keyframes um 84% bei Erhalt von 82% aller Instanzen der auftre­tenden Objek­tk­lassen.

Die Vorstel­lung der Ergeb­nisse der Studie erfol­gt im Juli diesen Jahres auf der Con­fer­ence on Human-Com­put­er Inter­ac­tion Inter­na­tion­al (HCII) in Toron­to, Kana­da.

Pub­lika­tion: Rit­ter, Marc; Kow­erko, Dan­ny; Hus­sein, Hus­sein; Heinzig, Manuel; Schloss­er, Tobias; Man­they, Robert & Bahr, Gisela Susanne: Sim­pli­fy­ing Acces­si­bil­i­ty With­out Dat­aloss: An Explorato­ry Study on Object Pre­serv­ing Keyframe Cul­li­ung. In: Uni­ver­sal Access in Human-Com­put­er Inter­ac­tion. Part of Human Com­put­er Inter­ac­tion Inter­na­tion­al (HCII) 2016, At Toron­to, Cana­da, Vol­ume: LNCS, 12 S. [Link]

 

Framework für die Generierung von Multimedia-Testsets

Original Einzelbild und fehlerhafte Strukturen nach der Verarbeitung (aus: Manthey et al: A Framework For Generation Of Testsets For Recent Multimedia Work ows, S. 7]

Orig­i­nal Einzel­bild und fehler­hafte Struk­turen nach der Ver­ar­beitung (aus: Man­they et al: A Frame­work For Gen­er­a­tion Of Test­sets
For Recent Mul­ti­me­dia Work
ows, S. 7]

Robert Man­they, Steve Con­rad und Jun.-Prof. Dr. Marc Rit­ter von der Stiftung­spro­fes­sur Media Com­put­ing der Tech­nis­chen Uni­ver­sität Chem­nitz entwickl­ten ein Frame­work für die Gener­ierung von Test­sets in mul­ti­me­di­alen Work­flows, das sie im Juli diesen Jahres auf der Con­fer­ence on Human-Com­put­er Inter­ac­tion Inter­na­tion­al (HCII) in Toron­to, Kana­da, präsen­tieren.

Das Frame­work bietet Möglichkeit­en für die Anwen­dung ver­schieden­er Funk­tio­nen, um Test­se­quen­zen zu gener­ieren, deren Einzel­bilder spezielle Muster bein­hal­ten. Diese Muster dienen dazu, nur schw­er erkennbare oder nur sel­ten auftre­tende Fehler im Video­ma­te­r­i­al zu provozieren und die erzeugten Sequen­zen mit dem Aus­gangs­ma­te­r­i­al zu ver­gle­ichen. Auf diese Weise kann fest­gestellt wer­den, ob sich der jew­eilige Fehler im Video­ma­te­r­i­al befind­et ohne eine kom­plette Sich­tung des Orig­i­nals vornehmen zu müssen. Bish­er wur­den meist fer­tige Videoauf­nah­men oder Bilder ver­wen­det, die jedoch nicht in ihrer Auflö­sung etc. an neue Anforderun­gen angepasst wer­den kon­nten ohne dabei Arte­fak­te zu erzeu­gen und somit Fehler bere­its im Tes­taus­gangs­ma­te­r­i­al zu gener­ieren. Mit dem Frame­work ist es nun möglich, die Test­sets beliebig zu gener­ieren und für die gegebe­nen Anforderun­gen zu opti­mieren.

Pub­lika­tion: Man­they, Robert; Con­rad, Steve & Rit­ter, Marc: A Frame­work For Gen­er­a­tion of Test­sets for Recent Mul­ti­me­dia Work­flows. In: Uni­ver­sal Access in Human-Com­put­er Inter­ac­tion. Part of Human Com­put­er Inter­ac­tion Inter­na­tion­al (HCII) 2016, Toron­to, Cana­da, Vol­ume: LNCS, 9 S. [Link]

 

Die IPT-Initiative lädt zum 2. Workshop ein

Am 24. Mai 2016 find­et von 13 — 17 Uhr das 2. öffentliche Sta­tus­meet­ing der Inno­Pro­file-Trans­fer-Ini­tia­tive local­izeIT mit seinen Stiftern und dem Pro­jek­t­träger im ehrwürdi­gen „Alten Heizhaus“ im Uni­ver­sität­steil in der Straße der Natio­nen statt. Im Fokus der Ver­anstal­tung ste­hen der Rück­blick auf die bish­eri­gen Fortschritte und Errun­gen­schaften im Pro­jekt sowie der Aus­blick auf das weit­ere Vorge­hen.

Bei Inter­esse an der Teil­nahme am Work­shop bit­ten wir bis zum 20.5.2016 um eine elek­tro­n­is­che Anmel­dung unter: mc-anmeldung@tu-chemnitz.de.

 

Deutscher Rechenzentrumspreis 2016

digitalfingerprint

Spez­iz­fis­che Ther­mal­muster (Quelle: Blog URZ TU Chem­nitz)

Zum zweit­en Mal in Folge gewann das Uni­ver­sität­srechen­zen­trum der TU Chem­nitz gemein­sam mit der Junior­pro­fes­sur “Media Com­put­ing” den begehrten Deutschen Rechen­zen­trum­spreis. In der Kat­e­gorie “Energieef­fizien­zsteigerun­gen durch Umbau in einem Bestand­srechen­zen­trum” fes­tigte das Uni­ver­sität­srechen­zen­r­tum seine Pos­tion inner­halb der inge­samt 58 deutsch­landweit ein­gere­icht­en Pro­jek­te aus Indus­trie und Forschung und erre­ichte damit einen Spitzen­platz.

Gemein­sam mit Jun.-Prof. Dr. Marc Rit­ter, von der Junior­pro­fes­sur “Media Com­put­ing”, entwick­elte PD Dr. Matthias Vodel, vom Uni­ver­sität­srechen­zen­trum, das Forschung­spro­jekt “Ther­mal-Fin­ger­prints: Mul­ti­di­men­sion­ale Echtzei­t­analyse im Rechen­zen­trum”. Ziel des Pro­jek­tes ist es, alle Soft­ware-Prozesse im Rechen­zen­trum präzise zu erken­nen und zu klas­si­fizieren. So kann die Kli­ma­tisierung der Server­räume energieef­fizient den momen­ta­nen Anforderun­gen angepasst wer­den. Unter­schiedliche Prozess­in­for­ma­tio­nen wer­den dabei zu einem dig­i­tal­en, ther­mis­chen Fin­ger­ab­druck verknüpft, der ein­deutig und wieder­erkennbar ist. Die Kli­ma­tisierungssys­teme kön­nen somit im Ide­al­fall Tem­per­atur­spitzen frühzeit­ig und ressourcenscho­nend ver­mei­den. Dadurch wird die Lebens­dauer von Rechen- und Spe­ich­er­sys­te­men gravierend ver­längert. Die Wis­senschaftler der Junior­pro­fes­sur “Media Com­put­ing” mod­i­fizieren hier­für ein Soft­ware-Frame­work zur Audio- und Video-Analyse für die Anwen­dung auf mul­ti­di­men­sion­ale Daten­quellen im Rechen­zen­trum. “Die Gener­ierung und Nutzung ther­mis­ch­er Fin­ger­prints zur Opti­mierung von Kli­ma­tisierungslö­sun­gen im Rechen­zen­trum stellt eine rich­tungsweisende Inno­va­tion dar”, fügt Rit­ter hinzu.

 

Klassifizierung akustischer Ereignisse zur Unterstützung im Pflegebereich

Mitar­beit­er der Junior­pro­fes­sur Media Com­put­ing und der Inten­ta GmbH reicht­en eine Forschungsar­beit zum The­ma der Klas­si­fizierung von Audio­ereignis­sen, wie Sprache und für den Pflege­bere­ich typ­is­che Geräusche, auf der Kon­ferenz für Elek­tro­n­is­che Sprachsig­nalver­ar­beitung (ESSV) in Leipzig von 2. bis 4. März 2016 ein.

Frequenzspektren von Sprach- sowie nicht-Sprachereignissen [aus: Hussein et al: Acoustic Event Classification for Ambient Assisted Living and Health Environments]

Fre­quen­zspek­tren von Sprach- sowie nicht-Sprachereignis­sen [aus: Hus­sein et al: Acoustic Event Clas­si­fi­ca­tion for Ambi­ent Assist­ed Liv­ing and Health Envi­ron­ments]

Im Rah­men der Forschung zeich­neten die Forsch­er typ­is­che Sprach- sowie nicht-Sprach­se­quen­zen, wie Schreie, brechende Scheiben, Möbelver­rück­en, etc. mit 58 Proban­den auf und annotierten diese manuell. Die Extrahierung der Sprach­merk­male, unterteilt in zeitab­hängige und fre­quen­z­ab­hängige Merk­male, ergab, dass Sprachereignisse auf­grund ihrer spek­tralen Struk­turen bess­er klas­si­fiziert wer­den kön­nen als nicht-Sprachereignisse. Anschließend nutzten die Forsch­er vielver­sprechende Klas­si­fika­toren zur Ein­teilung der akustis­chen Ereignisse in ver­schiedene Klassen. Die besten Ergeb­nisse erre­ichte dabei der Klas­si­fika­tor SMO (engl.: sequen­tial min­i­mal opti­miza­tion) mit 92,5%.

Pub­lika­tion: Hus­sein, Hus­sein; Rit­ter, Marc; Man­they, Robert & Heinzig, Manuel: Acoustic Event Clas­si­fi­ca­tion for Ambi­ent Assist­ed Liv­ing and Health­care Envi­ron­ments. In: Kon­feren­z­pa­per auf der 27. Kon­ferenz Elek­tro­n­is­che Sprachsig­nalver­ar­beitung 2016, Leipzig. [Link]

 

Grüße zum neuen Jahr 2016

Voll­ge­tankt mit neuer Energie und Taten­drang melden wir, das Team der Inno­Pro­file-Trans­fer-Ini­tia­tive local­izeIT, uns im neuen Jahr zurück. Denn wie Johann Wolf­gang von Goethe schon sagte:

Wenn ein Jahr nicht leer ver­laufen soll, muss man beizeit­en anfan­gen.”

In diesem Sinne wün­schen wir allen inter­essierten Lesern und Part­nern der Ini­tia­tive ein gesun­des und erfol­gre­iches Jahr 2016!

Ihr local­izeIT-Team

 

Forschungsabkommen zwischen dem Cornell Lab of Ornithology und der Stiftungsjuniorprofessur

Nach dem 1. Platz bei der Eval­u­a­tion­skam­pagne DCLDE im Juli 2015 bei der Detek­tion von Barten­walen ver­tiefte Jun.-Prof. Dr. Marc Rit­ter bei seinem Forschungsaufen­thalt am Cor­nell Lab of Ornithol­o­gy, Itha­ca, USA die gegen­seit­i­gen Beziehun­gen zur Forschung auf dem Gebi­et der robusten Lokalisierung von bioakustis­chen Sig­nalen im Out­door­bere­ich. Zukün­ftig ist vor allem die Inte­gra­tion von Stu­den­ten und Mitar­beit­ern der Ini­tia­tive in gemein­same Aus­tausch­pro­gramme auf inter­na­tionalem Niveau angestrebt.

Bei dem Forschungsaufen­thalt im Novem­ber kon­nte zudem ein automa­tis­ches in Cor­nell entwick­eltes Livede­tek­tion­ssys­tem in Betrieb genom­men wer­den, das zum Schutz wildleben­der Tier­arten einge­set­zt wer­den soll. Dazu platzierte das Forscherteam um Prof. Dr. Hol­ger Klinck mit u.a. Mikro­fon und Funkan­tenne aus­ges­tat­tete Box­en im angren­zen­den Wal­dob­ser­va­to­ri­um. Mit Hil­fe der aktuellen Forschun­gen im Pro­jekt local­izeIt wird zukün­ftig ver­sucht wer­den, bish­erige Ken­nt­nisse zur Lokali­sa­tion akustis­ch­er Ereignisse in den Out­door­bere­ich zu über­tra­gen. Detek­toren für diese Zwecke existieren zwar bere­its, jedoch gilt es deren Detek­tion­srate zu opti­mieren und die Quan­tität von Falschalar­men zu reduzieren.

Mit dem Ziel die inter­na­tionale Kol­lab­o­ra­tion zur bewussten Detek­tion von bioakustis­chen Sig­nalen im Out­door­bere­ich zu ver­tiefen und den stu­den­tis­chen Aus­tausch anzure­gen, befind­en sich bere­its weit­ere gemein­same Pro­jek­te mit dem Cor­nell Lab of Ornithol­o­gy gegen­wär­tig in der Antragsphase.

 

RapidMiner — Einladung zum Workshop

Die Junior­pro­fes­sur Media Com­put­ing ver­anstal­tet eine Work­shop-Rei­he zum The­ma Data-Min­ing-Tools. In der näch­sten Ver­anstal­tung am 09.12.2015 wird von 14:00–16:00 das Soft­warew­erkzeug “Rapid­Min­er” vorgestellt. Der Work­shop wird von Her­rn Maik Ben­ndorf (M.Sc.) durchge­führt, der zur Zeit an der Fakultät Infor­matik der TU Chem­nitz pro­moviert und als wis­senschaftlich­er Mitar­beit­er an der Hochschule Mit­twei­da tätig ist.

Inhaltlich wer­den fol­gende The­men fokussiert:

  • Instal­la­tion & Set­up
  • Ein­führung in Grund­funk­tion­al­ität sowie Spe­icherver­wal­tung
  • Import von Dat­en
  • Ler­nen & Klas­si­fika­tion
  • Anwen­dung und Vali­dierung
  • Plu­g­ins und Erweiterungsmöglichkeit­en
  • FAQ

Der Work­shop ist frei zugänglich und wen­det sich ins­beson­dere an Inter­essierte inner­halb der Inno­Pro­file-Ini­tia­tive local­izeIT und der beteiligten Insti­tu­tio­nen. Ver­anstal­tung­sort ist die Tech­nis­che Uni­ver­sität Chem­nitz, Straße der Natio­nen 62 in 09111 Chem­nitz. Auf­grund der begren­zten Teil­nehmerzahl ist eine Anmel­dung bei Frau Eve­lyn Lorenz (evelyn.lorenz@informatik.tu-chemnitz.de) bis zum 06.12.2015 erforder­lich. Raum­num­mer und Anfahrts­beschrei­bung wer­den nach erfol­gter Anmel­dung per E-Mail über­mit­telt.

 

Erneute Teilnahme am TRECVID Instance Search 2015 — Mit neuen Methoden näher ans Ziel

Die inter­na­tionale wis­senschaftliche Eval­u­a­tion­skam­pagne TRECVID ist eine etabilierte Serie von Work­shops, die sich auf die inhalts­basierte Infor­ma­tion­s­gewin­nung und Auswer­tung und dig­i­taler Videos konzen­tri­ert. Jedes Jahr stellen sich Teil­nehmer ein­er neuen real­ität­sna­hen Auf­gabe, die Forsch­er divers­er inter­na­tionaler Insti­tute in ein­er Art Wet­tbe­werb lösen. Die TRECVID-erfahre­nen Forsch­er der Junior­pro­fes­sur Media Com­put­ing und der Pro­fes­sur Medi­en­in­for­matik der Tech­nis­chen Uni­ver­sität Chem­nitz nah­men gemein­sam mit Prof. Dr. Dr. Gisela Susanne Bahr vom Flori­da Insti­tute of Tech­nol­o­gy (FIT) zum zweit­en Mal teil und waren dieses Jahr auch im Bere­ich der “Deep Learn­ing Strate­gies” aktiv.

Zudem wur­den neue Meth­o­d­en bzw. deren Verknüp­fun­gen im Task Instance Search angewen­det, um die geforderten Bild­in­halte in vier Durchgän­gen, davon ein inter­ak­tiv­er und drei automa­tis­che, kor­rekt zu erken­nen. So wur­den die Meth­o­d­en CNN (Con­vo­lu­tion­al Neur­al Net­work), die eine Art kün­stlich­es neu­rales Net­zw­erk erstellen, bei dem die “Neu­ro­nen” auf sich über­lap­pende Bere­iche reagieren, und SIFT (Scale Invari­ant Fea­ture Trans­form), bei dem die Merk­mals­beschrei­bun­gen invari­ant gegenüber z.B. Rota­tion, Skalierung, Beleuch­tungsvari­a­tion etc. sind, mit einem vor­angestell­ten Sequence Clus­ter­ing (SC) kom­biniert. Die Forsch­er stell­ten fest, dass die Meth­o­d­en CNN und SIFT in mehr als der Hälfte der Fälle der geforderten Suchan­fra­gen erfol­gre­ich waren, wobei SIFT beson­ders gut bei struk­turi­erten Objek­ten mit schar­fen Kan­ten funk­tion­ierte. Zusät­zlich erzielte das Sequence Clus­ter­ing (SC) als Vorver­ar­beitung­sprozess eine merk­liche Verbesserung der Detek­tion­sergeb­nisse, sodass die Forsch­er ins­ge­samt mehrere ver­schiedene Poten­tiale zur Opti­mierung der Objek­terken­nung aufdeck­ten.

Die Ergeb­nisse wur­den vom 16.–18. Novem­ber 2015 beim Nation­al Insti­tute of Stan­dards and Tech­nol­o­gy, Mary­land, USA von Junior­pro­fes­sor Dr. Marc Rit­ter präsen­tiert.

Pub­lika­tion: Rit­ter, Marc; Rick­ert, Markus; Jutu­ru Chenchu, Lokesh; Kahl, Ste­fan; Herms, Robert; Hus­sein, Hus­sein; Heinzig, Manuel, Man­they, Robert; Richter, Daniel; Bahr, Gisela Susanne & Eibl, Max­i­m­il­ian: Tech­nis­che Uni­ver­sität Chem­nitz at TRECVID Instance Search 2015. In: TRECVID Work­shop, 16.–18.11.2015, Gaithers­burg, Mary­land, USA, 12 S. [Link@RG][Link@NIST]

 

 

Pressespiegel Q4/2015

Einzigartiger Innovationspreis für Chemnitzer Senkrechtstarter

Die aus der TU Chem­nitz aus­ge­grün­dete Fir­ma INTENTA wurde mit dem Preis „Mach­er 25 — Der große Wirtschaft­spreis des Ostens“ geehrt

erschienen in Tech­nis­che Uni­ver­sität Chem­nitz, Uni aktuell, Online-Newslet­ter, 19.11.2015
[Link]

Die Junior­pro­fes­sur Media Com­put­ing und deren Mitar­beit­er aus dem Begleit­pro­jekt local­izeIT grat­ulieren dem Stifter Inten­ta GmbH ganz her­zlich zu dieser großar­ti­gen Ausze­ich­nung und freuen sich auf die weit­ere Zusam­me­nar­beit.

 
 
Projektgeber

Gef M BMBF

Gef M BMBF

LocalizeIt wird durch das Bundesministerium für Bildung und Forschung BMBF und die BMBF Innovationsinitiative Unternehmen Region von August 2014 bis Juli 2019 gefördert und durch den Projektträger PtJ betreut.

Projektnehmer

Logo TU trans cropp

Logo MI

Logo MC TRANS

localizeIT ist ein Projekt der
Stiftungsjuniorprofessur Media Computing und der Professur Medieninformatik der Technischen Universität Chemnitz

Forschungspartner

Intenta Logo

3D MicroMag Logo

IBS Logo

Kontakt

Dr. rer. nat. Danny Kowerko
Tech­ni­sche Uni­ver­si­tät Chem­nitz
Fakul­tät für Infor­ma­tik
Juniorpro­fes­sur Medi­a Computing
Straße der Natio­nen 62
09111 Chemnitz